题目内容
已知椭圆![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182034399213651/SYS201310241820343992136010_ST/0.png)
A.1
B.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182034399213651/SYS201310241820343992136010_ST/1.png)
C.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182034399213651/SYS201310241820343992136010_ST/2.png)
D.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182034399213651/SYS201310241820343992136010_ST/3.png)
【答案】分析:先设出|PF1|=m,|PF2|=n,利用椭圆的定义求得n+m的值,平方后求得mn和m2+n2的关系,代入△F1PF2的余弦定理中求得mn的值.
解答:解:设|PF1|=m,|PF2|=n,
由椭圆的定义可知m+n=2a,
∴m2+n2+2nm=4a2,
∴m2+n2=4a2-2nm
由余弦定理可知cos60°=
=
=
,求得mn=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182034399213651/SYS201310241820343992136010_DA/3.png)
故选C.
点评:本题主要考查了椭圆的应用,椭圆的简单性质和椭圆的定义.考查了考生对所学知识的综合运用.
解答:解:设|PF1|=m,|PF2|=n,
由椭圆的定义可知m+n=2a,
∴m2+n2+2nm=4a2,
∴m2+n2=4a2-2nm
由余弦定理可知cos60°=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182034399213651/SYS201310241820343992136010_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182034399213651/SYS201310241820343992136010_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182034399213651/SYS201310241820343992136010_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182034399213651/SYS201310241820343992136010_DA/3.png)
故选C.
点评:本题主要考查了椭圆的应用,椭圆的简单性质和椭圆的定义.考查了考生对所学知识的综合运用.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目