题目内容
设n∈N*,不等式组![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225013965715475/SYS201311012250139657154021_ST/0.png)
(1)求(xn,yn);
(2)设数列{an}满足
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225013965715475/SYS201311012250139657154021_ST/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225013965715475/SYS201311012250139657154021_ST/2.png)
(3)在(2)的条件下,比较
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225013965715475/SYS201311012250139657154021_ST/3.png)
【答案】分析:(1)由-nx+2n>0及x>0得0<x<2,因为x∈N*,所以x=1,从而x=1与y=-nx+2n的交点为(1,n),即所以Dn内的整点(xn,yn)为(1,n)
(2)先化简为
,两式相减即可证得
(3)先猜想:n∈N*时,
,再利用(2)的结论可以证明.
解答:解:(1)由-nx+2n>0及x>0得0<x<2,因为x∈N*,所以x=1
又x=1与y=-nx+2n的交点为(1,n),所以Dn内的整点,按由近到远排列为:
(1,1),(1,2),…,(1,n)------------------(4分)
(2)证明:n≥2时,![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225013965715475/SYS201311012250139657154021_DA/2.png)
所以
,![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225013965715475/SYS201311012250139657154021_DA/4.png)
两式相减得:
------------------(9分)
(3)n=1时,
,n=2时,![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225013965715475/SYS201311012250139657154021_DA/7.png)
可猜想:n∈N*时,
------------------(11分)
事实上n≥3时,由(2)知![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225013965715475/SYS201311012250139657154021_DA/9.png)
所以![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225013965715475/SYS201311012250139657154021_DA/10.png)
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225013965715475/SYS201311012250139657154021_DA/11.png)
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225013965715475/SYS201311012250139657154021_DA/12.png)
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225013965715475/SYS201311012250139657154021_DA/13.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225013965715475/SYS201311012250139657154021_DA/14.png)
=
-----(15分)
点评:本题以线性规划为载体,考查数列、不等式的证明,应注意充分挖掘题目的条件,合理转化
(2)先化简为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225013965715475/SYS201311012250139657154021_DA/0.png)
(3)先猜想:n∈N*时,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225013965715475/SYS201311012250139657154021_DA/1.png)
解答:解:(1)由-nx+2n>0及x>0得0<x<2,因为x∈N*,所以x=1
又x=1与y=-nx+2n的交点为(1,n),所以Dn内的整点,按由近到远排列为:
(1,1),(1,2),…,(1,n)------------------(4分)
(2)证明:n≥2时,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225013965715475/SYS201311012250139657154021_DA/2.png)
所以
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225013965715475/SYS201311012250139657154021_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225013965715475/SYS201311012250139657154021_DA/4.png)
两式相减得:
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225013965715475/SYS201311012250139657154021_DA/5.png)
(3)n=1时,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225013965715475/SYS201311012250139657154021_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225013965715475/SYS201311012250139657154021_DA/7.png)
可猜想:n∈N*时,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225013965715475/SYS201311012250139657154021_DA/8.png)
事实上n≥3时,由(2)知
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225013965715475/SYS201311012250139657154021_DA/9.png)
所以
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225013965715475/SYS201311012250139657154021_DA/10.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225013965715475/SYS201311012250139657154021_DA/11.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225013965715475/SYS201311012250139657154021_DA/12.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225013965715475/SYS201311012250139657154021_DA/13.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225013965715475/SYS201311012250139657154021_DA/14.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101225013965715475/SYS201311012250139657154021_DA/15.png)
点评:本题以线性规划为载体,考查数列、不等式的证明,应注意充分挖掘题目的条件,合理转化
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目