ÌâÄ¿ÄÚÈÝ
Éèn¡ÊN*£¬²»µÈʽ×é
Ëù±íʾµÄƽÃæÇøÓòΪDn£¬°ÑDnÄÚµÄÕûµã£¨ºá¡¢×Ý×ø±ê¾ùΪÕûÊýµÄµã£©°´Æäµ½ÔµãµÄ¾àÀë´Ó½üµ½Ô¶ÅÅÁгɵãÁУº£¨x1£¬y1£©£¬£¨x2£¬y2£©£¬¡£¬£¨xn£¬yn£©
£¨1£©Çó£¨xn£¬yn£©£»
£¨2£©ÉèÊýÁÐ{an}Âú×ãa1=x1£¬an=
(
+
+¡+
)£¬(n¡Ý2)£¬ÇóÖ¤£ºn¡Ý2ʱ£¬
-
=
£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬±È½Ï(1+
)(1+
)¡(1+
)Óë4µÄ´óС£®
|
£¨1£©Çó£¨xn£¬yn£©£»
£¨2£©ÉèÊýÁÐ{an}Âú×ãa1=x1£¬an=
y | 2 n |
1 | ||
|
1 | ||
|
1 | ||
|
an+1 | ||
(n+1
|
an | ||
|
1 | ||
|
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬±È½Ï(1+
1 |
a1 |
1 |
a2 |
1 |
an |
·ÖÎö£º£¨1£©ÓÉ-nx+2n£¾0¼°x£¾0µÃ0£¼x£¼2£¬ÒòΪx¡ÊN*£¬ËùÒÔx=1£¬´Ó¶øx=1Óëy=-nx+2nµÄ½»µãΪ£¨1£¬n£©£¬¼´ËùÒÔDnÄÚµÄÕûµã£¨xn£¬yn£©Îª£¨1£¬n£©
£¨2£©ÏÈ»¯¼òΪ
=
+
+¡+
£¬Á½Ê½Ïà¼õ¼´¿ÉÖ¤µÃ
£¨3£©ÏȲÂÏ룺n¡ÊN*ʱ£¬(1+
)(1+
)¡(1+
)£¼4£¬ÔÙÀûÓã¨2£©µÄ½áÂÛ¿ÉÒÔÖ¤Ã÷£®
£¨2£©ÏÈ»¯¼òΪ
an |
n2 |
1 | ||
|
1 | ||
|
1 | ||
(n-1
|
£¨3£©ÏȲÂÏ룺n¡ÊN*ʱ£¬(1+
1 |
a1 |
1 |
a2 |
1 |
an |
½â´ð£º½â£º£¨1£©ÓÉ-nx+2n£¾0¼°x£¾0µÃ0£¼x£¼2£¬ÒòΪx¡ÊN*£¬ËùÒÔx=1
ÓÖx=1Óëy=-nx+2nµÄ½»µãΪ£¨1£¬n£©£¬ËùÒÔDnÄÚµÄÕûµã£¬°´Óɽüµ½Ô¶ÅÅÁÐΪ£º
£¨1£¬1£©£¬£¨1£¬2£©£¬¡£¬£¨1£¬n£©------------------£¨4·Ö£©
£¨2£©Ö¤Ã÷£ºn¡Ý2ʱ£¬an=
(
+
+¡+
)=n2(
+
+¡+
)
ËùÒÔ
=
+
+¡+
£¬
=
+
+¡+
Á½Ê½Ïà¼õµÃ£º
-
=
------------------£¨9·Ö£©
£¨3£©n=1ʱ£¬1+
=2£¼4£¬n=2ʱ£¬(1+
)(1+
)=
£¼4
¿É²ÂÏ룺n¡ÊN*ʱ£¬(1+
)(1+
)¡(1+
)£¼4------------------£¨11·Ö£©
ÊÂʵÉÏn¡Ý3ʱ£¬ÓÉ£¨2£©Öª
=
ËùÒÔ(1+
)(1+
)¡(1+
)=
•
•
•¡•
=
•
•[
•
•¡•
]•(1+an)
=2•
•(
)2•(
)2•¡•(
)2•(
)2•an+1
=
=2(
+
+
+¡+
) ¡(13·Ö)
£¼2[1+
+
+¡+
]
=2(1+1-
+
-
+¡+
-
)£¼4-----£¨15·Ö£©
ÓÖx=1Óëy=-nx+2nµÄ½»µãΪ£¨1£¬n£©£¬ËùÒÔDnÄÚµÄÕûµã£¬°´Óɽüµ½Ô¶ÅÅÁÐΪ£º
£¨1£¬1£©£¬£¨1£¬2£©£¬¡£¬£¨1£¬n£©------------------£¨4·Ö£©
£¨2£©Ö¤Ã÷£ºn¡Ý2ʱ£¬an=
y | 2 n |
1 | ||
|
1 | ||
|
1 | ||
|
1 | ||
|
1 | ||
|
1 | ||
(n-1
|
ËùÒÔ
an |
n2 |
1 | ||
|
1 | ||
|
1 | ||
(n-1
|
an+1 |
(n+1)2 |
1 | ||
|
1 | ||
|
1 | ||
|
Á½Ê½Ïà¼õµÃ£º
an+1 | ||
(n+1
|
an | ||
|
1 | ||
|
£¨3£©n=1ʱ£¬1+
1 |
a1 |
1 |
a1 |
1 |
a2 |
5 |
2 |
¿É²ÂÏ룺n¡ÊN*ʱ£¬(1+
1 |
a1 |
1 |
a2 |
1 |
an |
ÊÂʵÉÏn¡Ý3ʱ£¬ÓÉ£¨2£©Öª
1+an | ||
|
n2 | ||
(n+1
|
ËùÒÔ(1+
1 |
a1 |
1 |
a2 |
1 |
an |
1+a1 |
a1 |
1+a2 |
a2 |
1+a3 |
a3 |
1+an |
an |
=
1+a1 |
a1 |
1 |
a2 |
1+a2 |
a3 |
1+a3 |
a4 |
1+an-1 |
an |
=2•
1 |
4 |
2 |
3 |
3 |
4 |
n-1 |
n |
n |
n+1 |
=
2an+1 |
(n+1)2 |
1 |
12 |
1 |
22 |
1 |
32 |
1 |
n2 |
£¼2[1+
1 |
1¡Á2 |
1 |
2¡Á3 |
1 |
(n-1)¡Án |
=2(1+1-
1 |
2 |
1 |
2 |
1 |
3 |
1 |
n-1 |
1 |
n |
µãÆÀ£º±¾ÌâÒÔÏßÐԹ滮ΪÔØÌ壬¿¼²éÊýÁС¢²»µÈʽµÄÖ¤Ã÷£¬Ó¦×¢Òâ³ä·ÖÍÚ¾òÌâÄ¿µÄÌõ¼þ£¬ºÏÀíת»¯
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿