题目内容
已知首项为x1的数列{xn}满足(a为常数).
(1)若对于任意的x1≠﹣1,有xn+2=xn对于任意的n∈N*都成立,求a的值;
(2)当a=1时,若x1>1,数列{xn}是递增数列还是递减数列?请说明理由;
(3)当a确定后,数列{xn}由其首项x1确定,当a=2时,通过对数列{xn}的探究,写出“{xn}是有穷数列”的一个真命题(不必证明).
(1)若对于任意的x1≠﹣1,有xn+2=xn对于任意的n∈N*都成立,求a的值;
(2)当a=1时,若x1>1,数列{xn}是递增数列还是递减数列?请说明理由;
(3)当a确定后,数列{xn}由其首项x1确定,当a=2时,通过对数列{xn}的探究,写出“{xn}是有穷数列”的一个真命题(不必证明).
解:(1)∵xn+2====xn
∴a2xn=(a+1)xn2+xn,
当n=1时,由x1的任意性得,
∴a=﹣1.
(2)数列{xn}是递减数列.
∵x1>0.
∴xn>0,n∈N*
又xn+1﹣xn=﹣xn=﹣<0,n∈N*,
故数列{xn}是递减数列.
(3)满足条件的真命题为:数列{xn}满足xn+1=,若x1=﹣,则{xn}是有穷数列.
∴a2xn=(a+1)xn2+xn,
当n=1时,由x1的任意性得,
∴a=﹣1.
(2)数列{xn}是递减数列.
∵x1>0.
∴xn>0,n∈N*
又xn+1﹣xn=﹣xn=﹣<0,n∈N*,
故数列{xn}是递减数列.
(3)满足条件的真命题为:数列{xn}满足xn+1=,若x1=﹣,则{xn}是有穷数列.
练习册系列答案
相关题目