题目内容

【题目】如图,三棱锥P-ABC中,平面PAC平面ABC, ABC=,点D、E在线段AC上,且AD=DE=EC=2,PD=PC=4,点F在线段AB上,且EF//BC.

(Ⅰ)证明:AB平面PFE.

(Ⅱ)若四棱锥P-DFBC的体积为7,求线段BC的长.

【答案】(1)见解析(2) BC=3或BC=3

【解析】试题分析:()先由已知易得,再注意平面平面,且交线为,由面面垂直的性质可得平面,再由线面垂直的性质可得到,再注意到,而,从而有,那么由线面垂的判定定理可得平面

)设则可用将四棱锥的体积表示出来,由已知其体积等于7,从而得到关于的一个一元方程,解此方程,再注意到即可得到的长.

试题解析:证明:如题(20)图.知, 为等腰边的中点,故

又平面平面,平面 平面平面

所以平面,从而.

.

从而与平面内两条相交直线都垂直,

所以平面.

2)解:设,则在直角中,

.从而

,知,得,

.

,,

从而四边形DFBC的面积为

由(1)知,PE平面,所以PE为四棱锥P-DFBC的高.

在直角中, ,

体积,

故得,解得,由于,可得.

所以.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网