题目内容
设 数列满足: ,
(1) 求证:数列是等比数列(要指出首项与公比),
(2)求数列的通项公式.
解:(1)
(2)
【解析】略
已知等差数列,公差不为零,,且成等比数列;
⑴求数列的通项公式;
⑵设数列满足,求数列的前项和.
已知函数,为正整数.
(Ⅰ)求和的值;
(Ⅱ)数列的通项公式为(),求数列的前项和;
(Ⅲ)设数列满足:,,设,若(Ⅱ)中的满足:对任意不小于3的正整数n,恒成立,试求m的最大值.