题目内容
| π |
| 2 |
(Ⅰ)试确定f(x)的解析式;
(Ⅱ)若f(
| α |
| 2π |
| 1 |
| 2 |
| 2π |
| 3 |
分析:(Ⅰ)先根据图象得到A=2,
=
-
=
,求出ω;再把点P(
,2)代入结合|?|<
即可求出φ,进而得到f(x)的解析式;
(Ⅱ)先根据f(
)=
,得到sin(
+
)=
;再结合cos(
-a)=cos[π-2(
+
)]=-cos2(
+
)以及二倍角的余弦公式即可解题.
| T |
| 4 |
| 5 |
| 6 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| π |
| 2 |
(Ⅱ)先根据f(
| a |
| 2π |
| 1 |
| 2 |
| α |
| 2 |
| π |
| 6 |
| 1 |
| 4 |
| 2π |
| 3 |
| π |
| 6 |
| a |
| 2 |
| π |
| 6 |
| a |
| 2 |
解答:解:(Ⅰ)由图象可知A=2,
=
-
=
,
∴T=2,ω=
=π将点P(
,2)代入y=2sin(ωx+?),
得 sin(
+?)=1,又|?|<
,所以?=
.
故所求解析式为f(x)=2sin(πx+
) (x∈R) 6分
(Ⅱ)∵f(
)=
,∴2sin(
+
)=
,即,sin(
+
)=
∴cos(
-a)=cos[π-2(
+
)]=-cos2(
+
)
=2sin2(
+
)-1=-
…12分.
| T |
| 4 |
| 5 |
| 6 |
| 1 |
| 3 |
| 1 |
| 2 |
∴T=2,ω=
| 2π |
| T |
| 1 |
| 3 |
得 sin(
| π |
| 3 |
| π |
| 2 |
| π |
| 6 |
故所求解析式为f(x)=2sin(πx+
| π |
| 6 |
(Ⅱ)∵f(
| a |
| 2π |
| 1 |
| 2 |
| a |
| 2 |
| π |
| 6 |
| 1 |
| 2 |
| α |
| 2 |
| π |
| 6 |
| 1 |
| 4 |
∴cos(
| 2π |
| 3 |
| π |
| 6 |
| a |
| 2 |
| π |
| 6 |
| a |
| 2 |
=2sin2(
| π |
| 6 |
| a |
| 2 |
| 7 |
| 8 |
点评:本题主要考查由y=Asin(ωx+φ)的部分图象确定其解析式以及三角函数的恒等变换及化简求值.解决第二问的关键在于得到cos(
-a)=cos[π-2(
+
)]=-cos2(
+
).
| 2π |
| 3 |
| π |
| 6 |
| a |
| 2 |
| π |
| 6 |
| a |
| 2 |
练习册系列答案
相关题目