题目内容
已知函数
,
,其中
且
.
(Ⅰ) 当
,求函数
的单调递增区间;
(Ⅱ)若
时,函数
有极值,求函数
图象的对称中心的坐标;
(Ⅲ)设函数
(
是自然对数的底数),是否存在a使
在
上为减函数,若存在,求实数a的范围;若不存在,请说明理由.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600325909.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240316003561109.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600356371.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600387336.png)
(Ⅰ) 当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600387375.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600418409.png)
(Ⅱ)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600434344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600450432.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600450432.png)
(Ⅲ)设函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600481980.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600512236.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600528418.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600543371.png)
(1)
单调增区间是
;(2)对称中心坐标为
;(3)符合条件的
满足
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600559447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600574713.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600590525.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600606283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600621446.png)
试题分析:本题综合考查函数与导数及运用导数求单调区间、极值等数学知识和方法,突出考查综合运用数学知识和方法分析问题解决问题的能力.第一问,先将
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600652386.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600559447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600684466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600699332.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600715473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600699332.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600762554.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600606283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600715473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600808495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600808495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600715473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600606283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600715473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600762554.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600964432.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600606283.png)
试题解析:(Ⅰ)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600980397.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240316009961057.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031601011552.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031601027641.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031601042341.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031601058407.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600559447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600574713.png)
(Ⅱ)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600699332.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600715473.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240316011361166.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031601152547.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031601167511.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031601183816.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031601183816.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031601214762.png)
而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031601214762.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031601245421.png)
所以函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031601183816.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600590525.png)
(Ⅲ)假设存在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600606283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031601323442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031601339385.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240316013541741.png)
(1)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031601370472.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031601386834.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600715473.png)
(2)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031601417497.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031601432565.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031601448566.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600715473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031601479470.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031601510373.png)
(3)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031601526492.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031601432565.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031601557572.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031601573641.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600606283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031601604368.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031601323442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031601339385.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600715473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031601510373.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600559447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031601682389.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031601698600.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031601713429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031601729491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031601729427.png)
综上所述,符合条件的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600606283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031600621446.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目