题目内容
数列{an}满足a1=1,a2=2,且an+1=
(n∈N*)
(1)求{an}的通项公式;
(2)数列{bn}满足bn=
(n∈N*),求数列{bn}的前n项和Sn.
an+an+2 |
2 |
(1)求{an}的通项公式;
(2)数列{bn}满足bn=
1 | ||||
|
分析:(1)由an+1=
(n∈N*),知数列{an}是等差数列,由a1=1,a2=2,知公差d=1,首项a1=1,由此能求出an.
(2)由bn=
(n∈N*),=
=
-
.知Sn=
+
+…+
=
-
+
-
+…+
-
,由此能求出
数列{bn}的前n项和Sn.
an+an+2 |
2 |
(2)由bn=
1 | ||||
|
1 | ||||
|
n+1 |
n |
1 | ||||
|
1 | ||||
|
1 | ||||
|
2 |
1 |
3 |
2 |
n+1 |
n |
数列{bn}的前n项和Sn.
解答:解:(1)∵an+1=
(n∈N*)
∴数列{an}是等差数列,
∵a1=1,a2=2,
∴公差d=1,首项a1=1,
∴an=n.
(2)∵bn=
(n∈N*),
=
=
-
.
∴Sn=
+
+…+
=
+
+…+
=
-
+
-
+…+
-
=
-1.
an+an+2 |
2 |
∴数列{an}是等差数列,
∵a1=1,a2=2,
∴公差d=1,首项a1=1,
∴an=n.
(2)∵bn=
1 | ||||
|
=
1 | ||||
|
=
n+1 |
n |
∴Sn=
1 | ||||
|
1 | ||||
|
1 | ||||
|
=
1 | ||||
|
1 | ||||
|
1 | ||||
|
=
2 |
1 |
3 |
2 |
n+1 |
n |
=
n+1 |
点评:本题考查数列的递推公式,综合性强,难度大,容易出错.解题时要认真审题,注意合理地进行等价转化.
练习册系列答案
相关题目