题目内容
(文)已知函数f(x)=(
sinωx+cosωx)cosωx-
(ω>0)的最小正周期为4π.
(1)求ω的值;
(2)求f(x)的单调递增区间.
3 |
1 |
2 |
(1)求ω的值;
(2)求f(x)的单调递增区间.
(1)∵f(x)=
sinωxcosωx+cos2ωx-
=
sin2ωx+
cos2ωx+
-
=sin(2ωx+
),
∵T=
=4π,
∴ω=
.
(2)∵f(x)=sin(
x+
)
∵-
+2kπ≤
x+
≤
+2kπ,k∈Z
∴-
π+4kπ≤x≤
π+4kπ,k∈Z
∴f(x)的单调递增区间为[-
+4kπ,
+4kπ](k∈Z).
3 |
1 |
2 |
=
| ||
2 |
1 |
2 |
1 |
2 |
1 |
2 |
=sin(2ωx+
π |
6 |
∵T=
2π |
2ω |
∴ω=
1 |
4 |
(2)∵f(x)=sin(
1 |
2 |
π |
6 |
∵-
π |
2 |
1 |
2 |
π |
6 |
π |
2 |
∴-
4 |
3 |
2 |
3 |
∴f(x)的单调递增区间为[-
4π |
3 |
2π |
3 |
练习册系列答案
相关题目