题目内容

【题目】已知抛物线,直线过抛物线焦点,且与抛物线交于 两点,以线段为直径的圆与抛物线准线的位置关系是( )

A. 相离 B. 相交 C. 相切 D. 不确定

【答案】C

【解析】取AB的中点M,分别过A,B,M作准线的垂线AP,BQ,MN,垂足分别为P,Q,N,如图所示,由抛物线的定义可知, ,在直角梯形APQB, ,故圆心M到准线的距离等于半径,所以以AB为直径的圆与抛物线的准线相切,故选C.

点睛:本题考查直线与圆的位置关系以及抛物线的定义的应用,属于中档题. 以线段为直径的圆的圆心为AB中点M,圆心到抛物线准线的距离为MN,由图可知MN为梯形APQB的中位线,即,再根据椭圆的定义可得,圆心M到准线的距离等于半径,故直线与圆相切.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网