题目内容
设函数f(x)=x2+|x-2|-1,x∈R.
(1)判断函数f(x)的奇偶性;
(2)求函数f(x)的最小值
(1)判断函数f(x)的奇偶性;
(2)求函数f(x)的最小值
(1)f(x)=
∵f(0)=1≠0,∴f(x)不是R上的奇函数.
∵f(1)=1,f(-1)=3,f(1)≠f(-1),
∴f(x)不是偶函数.故f(x)是非奇非偶的函数.
(2)当x≥2时,f(x)=x2+x-3,此时f(x)min=f(2)=3.
当x<2时,f(x)=x2-x+1,此时f(x)min=f=.
所以,f(x)min=.
∵f(0)=1≠0,∴f(x)不是R上的奇函数.
∵f(1)=1,f(-1)=3,f(1)≠f(-1),
∴f(x)不是偶函数.故f(x)是非奇非偶的函数.
(2)当x≥2时,f(x)=x2+x-3,此时f(x)min=f(2)=3.
当x<2时,f(x)=x2-x+1,此时f(x)min=f=.
所以,f(x)min=.
略
练习册系列答案
相关题目