题目内容

已知函数f(x)=
x+1x-2
,x∈[3,7].
(1)判断函数f(x)的单调性,并用定义加以证明;
(2)求函数f(x)的最大值和最小值.
分析:(1)函数f(x)在区间[3,7]内单调递减,根据取值、作差、变形定号、下结论的步骤,可得结论;
(2)根据函数的单调性,即可得到结论.
解答:解:(1)函数f(x)在区间[3,7]内单调递减,证明如下:
在[3,7]上任意取两个数x1和x2,且设x1>x2
∵f(x1)=
x1+1
x1-2
,f(x2)=
x2+1
x2-2

∴f(x1)-f(x2)=
x1+1
x1-2
-
x2+1
x2-2
=
3(x2-x1)
(x1-2)(x2-2)

∵x1,x2∈[3,7],x1>x2
∴x1-2>0,x2-2>0,x2-x1<0,
∴f(x1)-f(x2)=
3(x2-x1)
(x1-2)(x2-2)
<0.
即f(x1)<f(x2),由单调函数的定义可知,函数f(x)为[3,7]上的减函数.
(2)由单调函数的定义可得f(x)max=f(3)=4,f(x)min=f(7)=
8
5
点评:本题考查函数的单调性,考查函数的最值,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网