题目内容
已知函数f(x)=cos(2x+
)+sin2x
(1)求函数f(x)的单调递减区间及最小正周期;
(2)设锐角△ABC的三内角A,B,C的对边分别是a,b,c,若c=
,cosB=
,f(
)=-
,求b.
π |
3 |
(1)求函数f(x)的单调递减区间及最小正周期;
(2)设锐角△ABC的三内角A,B,C的对边分别是a,b,c,若c=
6 |
1 |
3 |
C |
2 |
1 |
4 |
(1)f(x)=cos(2x+
)+sin2x
=cos2xcos
-sin2xsin
+
=
cos2x-
sin2x+
-
cos2x
=-
sin2x+
,
∵ω=2,
∴最小正周期T=
=π,
令2kπ-
≤2x≤2kπ+
(k∈Z),
得kπ-
≤x≤kπ+
,k∈Z,
则f(x)的单调递减区间是[kπ-
,kπ+
](k∈Z);
(2)由(1)f(x)=-
sin2x+
得:f(
)=-
sinC+
=-
,
∴sinC=
,
又cosB=
,
∴sinB=
=
,
∴由正弦定理
=
,得b=
=
=
.
π |
3 |
=cos2xcos
π |
3 |
π |
3 |
1-cos2x |
2 |
=
1 |
2 |
| ||
2 |
1 |
2 |
1 |
2 |
=-
| ||
2 |
1 |
2 |
∵ω=2,
∴最小正周期T=
2π |
2 |
令2kπ-
π |
2 |
π |
2 |
得kπ-
π |
4 |
π |
4 |
则f(x)的单调递减区间是[kπ-
π |
4 |
π |
4 |
(2)由(1)f(x)=-
| ||
2 |
1 |
2 |
C |
2 |
| ||
2 |
1 |
2 |
1 |
4 |
∴sinC=
| ||
2 |
又cosB=
1 |
3 |
∴sinB=
1-cos2B |
2
| ||
3 |
∴由正弦定理
b |
sinB |
c |
sinC |
c•sinB |
sinC |
| ||||||
|
8 |
3 |
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目