题目内容
19.设x,y∈(-2,2),且xy=-1,则函数$\frac{4}{4-{x}^{2}}$+$\frac{9}{9-{y}^{2}}$的最小值为$\frac{12}{7}$.分析 由x,y∈(-2,2),且xy=-1,令$a=\frac{x}{2}$,b=$\frac{y}{3}$,则ab=-$\frac{1}{6}$.a∈(-1,1),b∈$(-\frac{2}{3},\frac{2}{3})$.则函数$\frac{4}{4-{x}^{2}}$+$\frac{9}{9-{y}^{2}}$=$\frac{1}{1-{a}^{2}}+\frac{1}{1-{b}^{2}}$≥$\frac{4}{2-{a}^{2}-{b}^{2}}$≥$\frac{4}{2-2ab}$即可得出.
解答 解:由x,y∈(-2,2),且xy=-1,
令$a=\frac{x}{2}$,b=$\frac{y}{3}$,则ab=-$\frac{1}{6}$.a∈(-1,1),b∈$(-\frac{2}{3},\frac{2}{3})$.
则函数$\frac{4}{4-{x}^{2}}$+$\frac{9}{9-{y}^{2}}$=$\frac{1}{1-(\frac{x}{2})^{2}}+\frac{1}{1-(\frac{y}{3})^{2}}$=$\frac{1}{1-{a}^{2}}+\frac{1}{1-{b}^{2}}$,
∵当s,t>0时,$\frac{2}{\frac{1}{s}+\frac{1}{t}}$$≤\frac{s+t}{2}$,
∴$\frac{1}{s}+\frac{1}{t}≥\frac{4}{s+t}$
∴$\frac{1}{1-{a}^{2}}+\frac{1}{1-{b}^{2}}$≥$\frac{4}{2-{a}^{2}-{b}^{2}}$,
∵a2+b2≥2ab,
∴0<2-(a2+b2)≤2-2ab,
∴$\frac{4}{2-{a}^{2}-{b}^{2}}$≥$\frac{4}{2-2ab}$=$\frac{12}{7}$,当且仅当a2=b2=$\frac{1}{6}$时取等号.
∴函数$\frac{4}{4-{x}^{2}}$+$\frac{9}{9-{y}^{2}}$的最小值为$\frac{12}{7}$.
故选:$\frac{12}{7}$.
点评 本题考查了基本不等式的性质,考查了变形能力、算能力,属于中档题.
A. | [$\frac{1}{3},\frac{3}{4}$]∪[$\frac{4}{3},\frac{7}{4}$] | B. | [$\frac{2}{3},\frac{3}{4}$]∪[1,$\frac{7}{4}$] | C. | [$\frac{2}{3},\frac{7}{8}$]∪[$\frac{7}{6},\frac{11}{8}$] | D. | [$\frac{4}{3},\frac{7}{4}$]∪[$\frac{7}{3},\frac{11}{4}$] |