题目内容

函数y=f(x)g(x)在求导数时,可以运用对数法:在函数解析式两边求对数得lny=g(x)lnf(x),两边求导数
y′
y
=g′(x)lnf(x)+g(x)
f′(x)
f(x)
,于是y'=f(x)g(x)[g′(x)lnf(x)+g(x)
f′(x)
f(x)
]
.运用此方法可以探求得知y=x
1
x
(x>0)
的一个单调增区间为
 
分析:仔细分析题意,找出f(x),g(x),然后依据题意求函数的导数,判断导数的单调性,求出一个单调增区间即可.
解答:解:仿照题目给定的方法,f(x)=x,g(x)=
1
x

所以f′(x)=1,g′(x)=-
1
x2

所以,y′=(-
1
x2
lnx+
1
x
1
x
)x
1
x
=
1-lnx
x2
x
1
x

∵x>0∴x
1
x
>0 , x2>0
 
∴要使y′>0,只要 1-lnx>0
即:x∈(0,e)
y=x
1
x
(x>0)
的一个单调增区间为:(0,e)或它的一个子集即可,
故答案为:(0,e)或它的一个子集.
点评:本题考查对数的运算性质,导数的运算,函数的单调性与导数的关系,考查计算能力,分析问题解决问题的能力,是基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网