题目内容

已知定义在R上的函数f(x)满足f(2)=1,f′(x)为f(x)的导函数.已知y=f′(x)的图象如图所示,若两个正数a,b满足f(2a+b)>1,则
b-1
a-2
的取值范围是(  )
分析:先根据导函数的图象判断原函数的单调性,从而确定a、b的范围,最后利用线性规划的方法得到答案.
解答:解:由图可知,当x>0时,导函数f'(x)<0,原函数单调递减,
∵两正数a,b满足f(2a+b)>1,且f(2)=1,
∴2a+b<2,a>0,b>0,画出可行域如图.
k=
b-1
a-2
表示点Q(2,1)与点P(x,y)连线的斜率,
当P点在A(1,0)时,k最大,最大值为:
1-0
2-1
=1

当P点在B(0,2)时,k最小,最小值为:
1-2
2-0
=-
1
2

k的取值范围是(-
1
2
,1).
故选A.
点评:本题主要考查函数的单调性与其导函数的正负之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网