题目内容

(2013•黄埔区一模)给定椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
,称圆心在原点O、半径是
a2+b2
的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为F(
2
,0)
,其短轴的一个端点到点F的距离为
3

(1)求椭圆C和其“准圆”的方程;
(2)过椭圆C的“准圆”与y轴正半轴的交点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点,求l1,l2的方程;
(3)若点A是椭圆C的“准圆”与x轴正半轴的交点,B,D是椭圆C上的两相异点,且BD⊥x轴,求
AB
AD
的取值范围.
分析:(1)利用椭圆和其“准圆”的标准方程及其定义即可得出;
(2)先求出点P的坐标,设出与椭圆相切的直线的方程,并与椭圆的方程联立,利用△=0即可求出切线的斜率,进而可 求出直线l1,l2的方程;
(3)先设出点B、D的坐标并求出点A的坐标,利用向量的数量积得出
AD
AB
,再利用点B在椭圆上即可得出其取值范围.
解答:解:(1)由题意可得:a=
3
c=
2
,b=1,∴r=
(
3
)2+12
=2.
∴椭圆C的方程为
x2
3
+y2=1
,其“准圆”的方程为x2+y2=4;
(2)由“准圆”的方程为x2+y2=4,令y=0,解得x=±2,取P(2,0),
设过点P且与椭圆相切的直线l的方程为my=x-2,
联立
my=x-2
x2
3
+y2=1
,消去x得到关于y的一元二次方程(3+m2)x2+4m+1=0,
∴△=16m2-4(3+m2)=0,解得m=±1,
故直线l1、l2的方程分别为:y=x-2,y=-x+2.
(3)由“准圆”的方程为x2+y2=4,令y=0,解得x=±2,取点A(2,0).
设点B(x0,y0),则D(x0,-y0).
AB
AD
=(x0-2,y0)•(x0-2,-y0)=(x0-2)2-y02
∵点B在椭圆
x2
3
+y2=1
上,∴
x02
3
+y02=1
,∴y02=1-
x02
3

AD
AB
=(x0-2)2-1+
x02
3
=
4
3
(x0-
3
2
)2

-
3
x0
3

0≤
4
3
(x0-
3
2
)2<7+4
3

0≤
AD
AB
<7+4
3
,即
AD
AB
的取值范围为[0,7+4
3
)
点评:熟练掌握圆锥曲线的定义及性质、直线与圆锥曲线相切问题的解法、斜率的数量积的定义是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网