题目内容

【题目】在平面几何中,可以得出正确结论:正三角形的内切圆半径等于这个正三角形的高的.”拓展到空间中,类比平面几何的上述结论,则正四面体的内切球半径等于这个正四面体的高的( )

A. B. C. D.

【答案】A

【解析】

平面图形类比空间图形,正四面体的内切球半径等于这个正四面体高的,证明时连接球心与正四面体的四个顶点,把正四面体分成四个高为的三棱锥,正四面体的体积,就是四个三棱锥的体积的和,即可求解.

从平面图形类比空间图形,从二维类比三维,可得如下的结论:

正四面体的内切球半径等于这个正四面体高的

证明如下:球心到正四面体的一个面的距离即为球的半径,连接球心与正四面体的四个顶点,把正四面体分成四个高为的三棱锥,所以,解得

所以正四面体的内切球半径等于这个正四面体的高的,故选A.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网