题目内容

(1)已知x>0,y>0,且
1
x
+
9
y
=1,求x+y的最小值;
(2)已知x<
5
4
,求函数y=4x-2+
1
4x-5
的最大值;
(3)若x,y∈(0,+∞)且2x+8y-xy=0,求x+y的最小值;
(4)若-4<x<1,求
x2-2x+2
2x-2
的最大值.
分析:(1)利用
1
x
+
9
y
=1与x+y相乘,展开利用均值不等式求解即可.
(2)由x<
5
4
,可得4x-5<0,首先应调整符号,再变形处理,即配凑积为定值.
(3)由2x+8y-xy=0变形可得
2
y
+
8
x
=1,与x+y相乘,展开利用均值不等式求解即可.
(4)先利用配方法和拆项法将原式变形,
x2-2x+2
2x-2
=
1
2
(x-1)2+1
x-1
=
1
2
[(x-1)+
1
x-1
]
,再调整符号,利用均值不等式求解.
解答:解:(1)∵x>0,y>0,
1
x
+
9
y
=1,∴x+y=(x+y)(
1
x
+
9
y
)
=
y
x
+
9x
y
+10≥6+10=16.
当且仅当
y
x
=
9x
y
时,上式等号成立,又
1
x
+
9
y
=1,∴x=4,y=12时,(x+y)min=16.
(2)∵x<
5
4
,∴5-4x>0,∴y=4x-2+
1
4x-5
=-(5-4x+
1
5-4x
)
+3≤-2+3=1,
当且仅当5-4x=
1
5-4x
,即x=1时,上式等号成立,故当x=1时,ymax=1.
(3)由2x+8y-xy=0,得2x+8y=xy,∴
2
y
+
8
x
=1,
∴x+y=(x+y)(
8
x
+
2
y
)
=10+
8y
x
+
2x
y

=10+2(
4y
x
+
x
y
)
≥10+2×2×
4y
x
x
y
=18,
当且仅当
4y
x
=
x
y
,即x=2y时取等号,
又2x+8y-xy=0,∴x=12,y=6,
∴当x=12,y=6时,x+y取最小值18.
(4)
x2-2x+2
2x-2
=
1
2
(x-1)2+1
x-1
=
1
2
[(x-1)+
1
x-1
]

=-
1
2
[-(x-1)+
1
-(x-1)
]

∵-4<x<1,∴-(x-1)>0,
1
-(x-1)
>0.
从而[-(x-1)+
1
-(x-1)
]
≥2
-
1
2
[-(x-1)+
1
-(x-1)
]
≤-1
当且仅当-(x-1)=
1
-(x-1)

即x=2(舍)或x=0时取等号.
(
x2-2x+2
2x-2
)max
=-1.
点评:利用基本不等式求函数最值是高考考查的重点内容,对不符合基本不等式形式的应首先变形,然后必须满足三个条件:一正、二定、三相等.同时注意灵活运用“1”的代换.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网