题目内容
(1)已知x>0,y>0,且1 |
x |
9 |
y |
(2)已知x<
5 |
4 |
1 |
4x-5 |
(3)若x,y∈(0,+∞)且2x+8y-xy=0,求x+y的最小值;
(4)若-4<x<1,求
x2-2x+2 |
2x-2 |
分析:(1)利用
+
=1与x+y相乘,展开利用均值不等式求解即可.
(2)由x<
,可得4x-5<0,首先应调整符号,再变形处理,即配凑积为定值.
(3)由2x+8y-xy=0变形可得
+
=1,与x+y相乘,展开利用均值不等式求解即可.
(4)先利用配方法和拆项法将原式变形,
=
•
=
[(x-1)+
],再调整符号,利用均值不等式求解.
1 |
x |
9 |
y |
(2)由x<
5 |
4 |
(3)由2x+8y-xy=0变形可得
2 |
y |
8 |
x |
(4)先利用配方法和拆项法将原式变形,
x2-2x+2 |
2x-2 |
1 |
2 |
(x-1)2+1 |
x-1 |
1 |
2 |
1 |
x-1 |
解答:解:(1)∵x>0,y>0,
+
=1,∴x+y=(x+y)(
+
)=
+
+10≥6+10=16.
当且仅当
=
时,上式等号成立,又
+
=1,∴x=4,y=12时,(x+y)min=16.
(2)∵x<
,∴5-4x>0,∴y=4x-2+
=-(5-4x+
)+3≤-2+3=1,
当且仅当5-4x=
,即x=1时,上式等号成立,故当x=1时,ymax=1.
(3)由2x+8y-xy=0,得2x+8y=xy,∴
+
=1,
∴x+y=(x+y)(
+
)=10+
+
=10+2(
+
)≥10+2×2×
=18,
当且仅当
=
,即x=2y时取等号,
又2x+8y-xy=0,∴x=12,y=6,
∴当x=12,y=6时,x+y取最小值18.
(4)
=
•
=
[(x-1)+
]
=-
[-(x-1)+
]
∵-4<x<1,∴-(x-1)>0,
>0.
从而[-(x-1)+
]≥2
-
[-(x-1)+
]≤-1
当且仅当-(x-1)=
,
即x=2(舍)或x=0时取等号.
即(
)max=-1.
1 |
x |
9 |
y |
1 |
x |
9 |
y |
y |
x |
9x |
y |
当且仅当
y |
x |
9x |
y |
1 |
x |
9 |
y |
(2)∵x<
5 |
4 |
1 |
4x-5 |
1 |
5-4x |
当且仅当5-4x=
1 |
5-4x |
(3)由2x+8y-xy=0,得2x+8y=xy,∴
2 |
y |
8 |
x |
∴x+y=(x+y)(
8 |
x |
2 |
y |
8y |
x |
2x |
y |
=10+2(
4y |
x |
x |
y |
|
当且仅当
4y |
x |
x |
y |
又2x+8y-xy=0,∴x=12,y=6,
∴当x=12,y=6时,x+y取最小值18.
(4)
x2-2x+2 |
2x-2 |
1 |
2 |
(x-1)2+1 |
x-1 |
1 |
2 |
1 |
x-1 |
=-
1 |
2 |
1 |
-(x-1) |
∵-4<x<1,∴-(x-1)>0,
1 |
-(x-1) |
从而[-(x-1)+
1 |
-(x-1) |
-
1 |
2 |
1 |
-(x-1) |
当且仅当-(x-1)=
1 |
-(x-1) |
即x=2(舍)或x=0时取等号.
即(
x2-2x+2 |
2x-2 |
点评:利用基本不等式求函数最值是高考考查的重点内容,对不符合基本不等式形式的应首先变形,然后必须满足三个条件:一正、二定、三相等.同时注意灵活运用“1”的代换.
练习册系列答案
相关题目