题目内容

【题目】如图,在杨辉三角形中,斜线l的上方从1按箭头所示方向可以构成一个“锯齿形”的数列:1,3,3,4,6,5,10,…,记此数列的前n项之和为Sn , 则S21的值为(
A.66
B.153
C.295
D.361

【答案】D
【解析】解:从杨辉三角形的生成过程,可以得到你的这个数列的通项公式a(n). n为偶数时,a(n)=(n+4)/2,
n为奇数时,1=c20=C22 , 3=C31=C32 , 6=C42 , 10=C53=C52 , …
a(n)=Cn+3/22=(n+3)(n+1)/8.
然后求前21项和,偶数项和为75,
奇数项和为[(22+42+62+…+222)+2(2+4+6…+22)]/8
=[(22×4×23)+11×24]/8=286,
最后S(21)=361
故选D.
【考点精析】本题主要考查了数列的前n项和的相关知识点,需要掌握数列{an}的前n项和sn与通项an的关系才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网