题目内容
设f(x)=x2+bx+c (b,c为常数),方程f(x)-x=0的两个实根为x1、x2且满足x1>0,x2-x1>1.
(1)求证:b2>2(b+2c);
(2)0<t<x1,比较f(t)与x1的大小;
(3)若当x∈[-1,1]时,对任意的x都有|f(x)|≤1,求证:|1+b|≤2.
(1)求证:b2>2(b+2c);
(2)0<t<x1,比较f(t)与x1的大小;
(3)若当x∈[-1,1]时,对任意的x都有|f(x)|≤1,求证:|1+b|≤2.
(1)证明:方程f(x)-x=0的两根为x1、x2,
因而有(x2-x1)2=b2-2b+1-4c,又x2-x1>1,
∴b2-2b+1-4c>1,∴b2>2(b+2c).(5分)
(2)∵x1是方程f(x)-x=0的根,∴x1=f(x1),
∴f(t)-x1=f(t)-f(x1)=(t-x1)(t+x1+b)
=(t-x1)(t+1-x1).
∵x1+x2=1-b,0<t<x1
∴t-x1<0,又x2-x1>1,即x1+1-x2<0,
∴t+1-x2<x1+1-x2<0
故f(t)-x1>0,∴f(t)>x1(10分)
(3)证明:∵x∈[-1,1]时,恒有|f(x)|≤1,
∴f(0)=|c|≤1,
|f(1)|=|1+b+c|≤1,
从而|1+b|=|1+b+c-c|≤|1+b+c|+|-c|=|1+b+c|+|c|≤1+1=2.(14分)
因而有(x2-x1)2=b2-2b+1-4c,又x2-x1>1,
∴b2-2b+1-4c>1,∴b2>2(b+2c).(5分)
(2)∵x1是方程f(x)-x=0的根,∴x1=f(x1),
∴f(t)-x1=f(t)-f(x1)=(t-x1)(t+x1+b)
=(t-x1)(t+1-x1).
∵x1+x2=1-b,0<t<x1
∴t-x1<0,又x2-x1>1,即x1+1-x2<0,
∴t+1-x2<x1+1-x2<0
故f(t)-x1>0,∴f(t)>x1(10分)
(3)证明:∵x∈[-1,1]时,恒有|f(x)|≤1,
∴f(0)=|c|≤1,
|f(1)|=|1+b+c|≤1,
从而|1+b|=|1+b+c-c|≤|1+b+c|+|-c|=|1+b+c|+|c|≤1+1=2.(14分)
练习册系列答案
相关题目
设f(x)=|x2-
|,若0<a<b,且f(a)=f(b),则ab的取值范围是( )
1 |
2 |
A、(0,
| ||
B、(0,
| ||
C、(0,2) | ||
D、(0,2] |