题目内容
不等式x+
>2的解集是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823124743971268.gif)
A.(-1,0)∪(1,+∞) | B.(-∞,-1)∪(0,1) |
C.(-1,0)∪(0,1) | D.(-∞,-1)∪(1,+∞) |
A
解法一:通过移项、整理,原不等式可变为
>0,
即
>0.
利用“穿线法”解此不等式,如下图.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823124744267499.gif)
得不等式的解集为{x|-1<x<0或x>1}.
解法二:利用数形结合法.
原不等式可化为
>2-x,
构造两个函数f(x)=
,g(x)=2-x,看当x取什么范围时,f(x)的图象在g(x)的上方.如下图所示.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823124744330949.gif)
不等式的解集为{x|-1<x<0或x>1}.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823124743987313.gif)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823124744252466.gif)
利用“穿线法”解此不等式,如下图.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823124744267499.gif)
得不等式的解集为{x|-1<x<0或x>1}.
解法二:利用数形结合法.
原不等式可化为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823124743971268.gif)
构造两个函数f(x)=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823124743971268.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823124744330949.gif)
不等式的解集为{x|-1<x<0或x>1}.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目