题目内容
【题目】设函数f(x)=|2x+2|﹣|x﹣2|. (Ⅰ)求不等式f(x)>2的解集;
(Ⅱ)若x∈R,f(x)≥t2﹣ t恒成立,求实数t的取值范围.
【答案】解:(Ⅰ)函数f(x)=|2x+2|﹣|x﹣2|= , 当x<﹣1时,不等式即﹣x﹣4>2,求得x<﹣6,∴x<﹣6.
当﹣1≤x<2时,不等式即3x>2,求得x> ,∴ <x<2.
当x≥2时,不等式即x+4>2,求得x>﹣2,∴x≥2.
综上所述,不等式的解集为{x|x> 或x<﹣6}.
(Ⅱ)由以上可得f(x)的最小值为f(﹣1)=﹣3,若x∈R,f(x)≥t2﹣ t恒成立,
只要﹣3≥t2﹣ t,即2t2﹣7t+6≤0,求得 ≤t≤2
【解析】(Ⅰ)根据函数f(x)= ,分类讨论,求得f(x)>2的解集.(Ⅱ)由f(x)的解析式求得f(x)的最小值为f(﹣1)=﹣3,再根据f(﹣1)≥t2﹣ ,求得实数t的取值范围.
【考点精析】通过灵活运用绝对值不等式的解法,掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号即可以解答此题.
【题目】在高中学习过程中,同学们经常这样说“如果物理成绩好,那么学习数学就没什么问题”某班针对“高中生物理对数学学习的影响”进行研究,得到了学生的物理成绩与数学成绩具有线性相关关系的结论,现从该班随机抽取5名学生在一次考试中的物理和数学成绩,如表:
编号 | 1 | 2 | 3 | 4 | 5 |
物理(x) | 90 | 85 | 74 | 68 | 63 |
数学(y) | 130 | 125 | 110 | 95 | 90 |
(参考公式:b= , = b ,)参考数据:902+852+742+682+632=29394
90×130+85×125+74×110+68×95+63×90=42595.
(1)求数学y成绩关于物理成绩x的线性回归方程 = x+ (b精确到0.1),若某位学生的物理成绩为80分时,预测他的物理成绩.
(2)要从抽取的这五位学生中随机选出三位参加一项知识竞赛,以X表示选中的学生的数学成绩高于100分的人数,求随机变量X的分布列及数学期望.