ÌâÄ¿ÄÚÈÝ
Å×ÎïÏßÓйâѧÐÔÖÊ£ºÓÉÆä½¹µãÉä³öµÄ¹âÏß¾Å×ÎïÏßÕÛÉäºó£¬ÑØƽÐÐÓÚÅ×ÎïÏ߶ԳÆÖáµÄ·½ÏòÉä³ö£¬½ñÓÐÅ×ÎïÏßy2=2px(p£¾0).Ò»¹âÔ´ÔÚµãM(,4)´¦£¬ÓÉÆä·¢³öµÄ¹âÏßÑØƽÐÐÓÚÅ×ÎïÏßµÄÖáµÄ·½ÏòÉäÏòÅ×ÎïÏßÉϵĵãP£¬ÕÛÉäºóÓÖÉäÏòÅ×ÎïÏßÉϵĵãQ£¬ÔÙÕÛÉäºó£¬ÓÖÑØƽÐÐÓÚÅ×ÎïÏßµÄÖáµÄ·½ÏòÉä³ö£¬Í¾ÖÐÓöµ½Ö±Ïßl£º2x-4y-17=0ÉϵĵãN£¬ÔÙÕÛÉäºóÓÖÉä»ØµãM(ÈçͼËùʾ).£¨1£©ÉèP¡¢QÁ½µã×ø±ê·Ö±ðΪ(x1,y1)¡¢(x2,y2)£¬Ö¤Ã÷y1¡¤y2=-p2£»
£¨2£©ÇóÅ×ÎïÏߵķ½³Ì£»
£¨3£©ÊÔÅжÏÔÚÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚÒ»µã£¬Ê¹¸ÃµãÓëµãM¹ØÓÚPNËùÔÚµÄÖ±Ï߶Գƣ¿Èô´æÔÚ£¬ÇëÇó³ö´ËµãµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ.
˼··ÖÎö£º±¾ÌâÊÇÒ»µÀÓëÎïÀíÖеĹâѧ֪ʶÏà½áºÏµÄ×ÛºÏÐÔÌâÄ¿.
Ö¤Ã÷:ÓÉÅ×ÎïÏߵĹâѧÐÔÖʼ°ÌâÒ⣬֪¹âÏßPQ±Ø¹ýÅ×ÎïÏߵĽ¹µãF(£¬0)£¬ÉèÖ±ÏßPQµÄ·½³ÌΪy=k(), ¢Ù
ÓÉ¢Ùʽ,µÃx=.
½«Æä´úÈëÅ×ÎïÏß·½³Ìy2=2pxÖУ¬ÕûÀíµÃy2--p2=0.ÓÉΤ´ï¶¨Àí£¬y1y2=-p2.
µ±Ö±ÏßPQµÄбÂʽÇΪ90¡ãʱ£¬½«x=´úÈëÅ×ÎïÏß·½³Ì£¬µÃy=¡Àp,ͬÑùµÃµ½y1¡¤y2=-p2.
(2)½â£ºÒòΪ¹âÏßQN¾Ö±Ïßl·´ÉäºóÓÖÉäÏòMµã£¬ËùÒÔÖ±ÏßMNÓëÖ±ÏßQN¹ØÓÚÖ±Ïßl¶Ô³Æ.ÉèµãM(£¬4)¹ØÓÚlµÄ¶Ô³ÆµãΪM¡ä(x¡ä,y¡ä)£¬
Ôò½âµÃ
Ö±ÏßQNµÄ·½³ÌΪy=-1,QµãµÄ×Ý×ø±êy2=-1.
ÓÉÌâÉèPµãµÄ×Ý×ø±êy1=4£¬ÇÒÓÉ(1)Öª£ºy1¡¤y2=-p2,Ôò4¡¤(-1)=-p2,µÃp=2.
¹ÊËùÇóÅ×ÎïÏß·½³ÌΪy2=4x.
(3)½â£º½«y=4´úÈëy2=4x,µÃx=4.¹ÊPµã×ø±êΪ(4£¬4).½«y=-1´úÈëÖ±ÏßlµÄ·½³ÌΪ2x-4y-17=0.µÃx=.¹ÊNµã×ø±êΪ(£¬-1).ÓÉP¡¢NÁ½µã×ø±êµÃÖ±ÏßPNµÄ·½³ÌΪ2x+y-12=0.
ÉèMµã¹ØÓÚÖ±ÏßNPµÄ¶Ô³ÆµãΪM1(x1,y1)£¬
Ôò
½âµÃ
ÓÖM1(,-1)µÄ×ø±êÊÇÅ×ÎïÏß·½³Ìy2=4xµÄ½â£¬
¹ÊÅ×ÎïÏßÉÏ´æÔÚÒ»µã(£¬-1)ÓëµãM¹ØÓÚÖ±ÏßPN¶Ô³Æ.