题目内容
1.已知等差数列{an}中,公差d>0,且满足a2•a3=2,a1+a4=3,(1)求数列{an}的通项公式;
(2)设${b}_{n}={2}^{{a}_{n}}$,求数列{bn}的前n项之和Sn.
分析 (1)利用等差数列的通项公式即可得出;
(2)利用等比数列的前n项和公式即可得出.
解答 解:(1)∵a2•a3=2,a1+a4=3,
∴$\left\{\begin{array}{l}{({a}_{1}+d)({a}_{1}+2d)=2}\\{2{a}_{1}+3d=3}\end{array}\right.$,d>0.
解得d=1,a1=0.
∴an=n-1.
(2)由(1)得:${b}_{n}={2}^{{a}_{n}}$=2n-1,
∴数列{bn}是首项为1,公比为2的等比数列,
∴Sn=$\frac{{2}^{n}-1}{2-1}$
=2n-1.
点评 本题考查了等差数列与等比数列的前n项和公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
6.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,若过点F且与斜率为正数的渐近线垂直的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )
A. | (1,$\sqrt{2}$] | B. | (1,$\sqrt{2}$) | C. | ($\sqrt{2}$,+∞) | D. | [$\sqrt{2}$,+∞) |
13.某日用品按行业质量标准分成五个等级,等级系数依次为1,2,3,4,5.现从一批日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如表所示:
(1)求a,b,c的值;
(2)从等级为4的2件日用品和等级为5的3件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率.
等级 | 频数 | 频率 |
1 | c | a |
2 | 4 | b |
3 | 9 | 0.45 |
4 | 2 | 0.1 |
5 | 3 | 0.15 |
合计 | 20 | 1.00 |
(2)从等级为4的2件日用品和等级为5的3件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率.
10.设函数$f(x)=\left\{\begin{array}{l}(a-2)x,(x≤2)\\{2^x}-1,(x>2)\end{array}\right.$是R上的单调递增函数,则实数a的取值范围为( )
A. | (2,+∞) | B. | (-∞,$\frac{7}{2}$] | C. | (2,$\frac{7}{2}$) | D. | (2,$\frac{7}{2}]$ |
11.某产品广告费x(千元)与销售额y(万元)之间有如图对应数据:
(1)求销售额y关于广告费x的线性回归方程$\widehat{y}$=bx+a;
(2)当广告费支出1万元时,预测销售额为多少万元?
(参考公式:b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$)
x | 2 | 4 | 5 | 6 | 8 |
y | 3 | 4 | 6 | 5 | 7 |
(2)当广告费支出1万元时,预测销售额为多少万元?
(参考公式:b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$)