题目内容
已知函数
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231557880436.png)
(Ⅰ)求函数
的最大值和最小正周期;
(Ⅱ)设
的内角
的对边分别
且
,
,若
求
的值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232315578651031.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231557880436.png)
(Ⅰ)求函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231557896409.png)
(Ⅱ)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231557912491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231557927463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231557943446.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231557974321.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231557990504.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231558005749.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231558021386.png)
(Ⅰ)0,
(Ⅱ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231558083521.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231558052282.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231558068444.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231558083521.png)
本题考查三角函数的化简,考查三角函数的性质,考查正弦、余弦定理的运用,属于中档题.
(1)利用二倍角公式、辅助角公式化简三角函数,即可求函数f(x)的最大值和最小正周期;
(2)先求出C,再利用sin(A+C)=2sinA,结合正弦、余弦定理,可求a,b的值.
解:(1)
…………….3分
则
的最大值为0,最小正周期是
…………………6分
(2)
则![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231558208864.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232315582241530.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231558239885.png)
由正弦定理得
①………………………9分
由余弦定理得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232315587381029.png)
即
②
由①②解得
………………12分
(1)利用二倍角公式、辅助角公式化简三角函数,即可求函数f(x)的最大值和最小正周期;
(2)先求出C,再利用sin(A+C)=2sinA,结合正弦、余弦定理,可求a,b的值.
解:(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232315581141801.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231558146447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231558161624.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232315581771120.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231558208864.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232315582241530.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231558239885.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231558348841.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231558551543.png)
由余弦定理得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232315587381029.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231558770621.png)
由①②解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231558068444.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231558083521.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目