题目内容
【题目】在Rt△ABC中,CA=CB=2,M,N是斜边AB上的两个动点,且MN= ,则 的取值范围为 .
【答案】[ ,2]
【解析】解:以C为坐标原点,CA为x轴建立平面坐标系,
则A(2,0),B(0,2),
∴AB所在直线的方程为: ,则y=2﹣x,
设M(a,2﹣a),N(b,2﹣b),且0≤a≤2,0≤b≤2不妨设a>b,
∵MN= ,
∴(a﹣b)2+(b﹣a)2=2,
∴a﹣b=1,
∴a=b+1,
∴0≤b≤1
∴ =(a,2﹣a)(b,2﹣b)
=2ab﹣2(a+b)+4
=2(b2﹣b+1),0≤b≤1
∴当b=0或b=1时有最大值2;
当b= 时有最小值
∴ 的取值范围为[ ,2]
所以答案是[ ,2]
练习册系列答案
相关题目
【题目】为建立健全国家学生体质健康监测评价机制,激励学生积极参加身体锻炼,教育部印发《国家学生体质健康标准(2014年修订)》,要求各学校每学期开展覆盖本校各年级学生的《标准》测试工作,并根据学生每个学期总分评定等级.某校决定针对高中学生,每学期进行一次体质健康测试,以下是小明同学六个学期体质健康测试的总分情况.
学期 | 1 | 2 | 3 | 4 | 5 | 6 |
总分(分) | 512 | 518 | 523 | 528 | 534 | 535 |
(1)请根据上表提供的数据,用相关系数说明与的线性相关程度,并用最小二乘法求出关于的线性回归方程(线性相关系数保留两位小数);
(2)在第六个学期测试中学校根据 《标准》,划定540分以上为优秀等级,已知小明所在的学习小组10个同学有6个被评定为优秀,测试后同学们都知道了自己的总分但不知道别人的总分,小明随机的给小组内4个同学打电话询问对方成绩,优秀的同学有人,求的分布列和期望.
参考公式: ,;
相关系数;
参考数据:,.