题目内容

7.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{{1-{a^2}}}=1$(a>0)的离心率为$\sqrt{2}$,则a的值为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{1}{3}$D.$\frac{{\sqrt{3}}}{3}$

分析 直接利用双曲线求出半焦距,利用离心率求出a即可.

解答 解:双曲线$\frac{x^2}{a^2}-\frac{y^2}{{1-{a^2}}}=1$,可得c=1,
双曲线的离心率为:$\sqrt{2}$,
∴$\frac{c}{a}=\sqrt{2}$,解得a=$\frac{\sqrt{2}}{2}$.
故选:B.

点评 本题考查双曲线的离心率的求法,双曲线的简单性质的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网