题目内容


已知函数是定义在R上的奇函数,
则不等式  的解集是              .


解析考点:利用导数研究函数的单调性.
分析:先根据 [ ]′= >0判断函数的单调性,进而分别看x>1和0<x<1时f(x)与0的关系.再根据函数的奇偶性判断-1<x<0和x<-1时f(x)与0的关系,最后去x的并集即可得到答案.
解:[]′=>0,即x>0时是增函数
当x>1时,>f(1)=0,f(x)>0;
0<x<1时,<f(1)=0,f(x)<0.
又f(x)是奇函数,所以-1<x<0时,f(x)=-f(-x)>0;x<-1时f(x)=-f(-x)<0.
则不等式f(x)>0的解集是(-1,0)∪(1,+∞)
故答案为:(-1,0)∪(1,+∞).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网