题目内容

如图,椭圆
x2
16
+
y2
12
=1
的长轴为A1A2,短轴为B1B2,将坐标平面沿y轴折成一个二面角,使点A2在平面B1A1B2上的射影恰好是该椭圆的左焦点,则此二面角的大小为
π
3
π
3
分析:确定椭圆中的几何量,确定二面角的平面角,利用点A2在平面B1A1B2上的射影恰好是该椭圆的左焦点,可求得cos∠A2OF1=
c
a
=
1
2
,即可求得结论.
解答:解:由题意,椭圆
x2
16
+
y2
12
=1
中a=4,c=
a2-b2
=2
,∠A2OF1为二面角的平面角
∵点A2在平面B1A1B2上的射影恰好是该椭圆的左焦点
∴在直角△A2OF1中,cos∠A2OF1=
c
a
=
1
2

∴∠A2OF1=
π
3

即二面角的大小为
π
3

故答案为:
π
3
点评:本题考查椭圆与立体几何的综合,考查面面角,解题的关键是确定二面角的平面角.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网