题目内容
如图,已知双曲线C1:
-y2=1,曲线C2:|y|=|x|+1,P是平面内一点,若存在过点P的直线与C1,C2都有公共点,则称P为“C1-C2型点“
(1)在正确证明C1的左焦点是“C1-C2型点“时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);
(2)设直线y=kx与C2有公共点,求证|k|>1,进而证明原点不是“C1-C2型点”;
(3)求证:圆x2+y2=
内的点都不是“C1-C2型点”
x2 |
2 |
(1)在正确证明C1的左焦点是“C1-C2型点“时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);
(2)设直线y=kx与C2有公共点,求证|k|>1,进而证明原点不是“C1-C2型点”;
(3)求证:圆x2+y2=
1 |
2 |
(1)C1的左焦点为(-
,0),写出的直线方程可以是以下形式:
x=-
或y=k(x+
),其中|k|≥
.
(2)证明:因为直线y=kx与C2有公共点,
所以方程组
有实数解,因此|kx|=|x|+1,得|k|=
>1.
若原点是“C1-C2型点”,则存在过原点的直线与C1、C2都有公共点.
考虑过原点与C2有公共点的直线x=0或y=kx(|k|>1).
显然直线x=0与C1无公共点.
如果直线为y=kx(|k|>1),则由方程组
,得x2=
<0,矛盾.
所以直线y=kx(|k|>1)与C1也无公共点.
因此原点不是“C1-C2型点”.
(3)证明:记圆O:x2+y2=
,取圆O内的一点Q,设有经过Q的直线l与C1,C2都有公共点,显然l不与x轴垂直,
故可设l:y=kx+b.
若|k|≤1,由于圆O夹在两组平行线y=x±1与y=-x±1之间,因此圆O也夹在直线y=kx±1与y=-kx±1之间,
从而过Q且以k为斜率的直线l与C2无公共点,矛盾,所以|k|>1.
因为l与C1由公共点,所以方程组
有实数解,
得(1-2k2)x2-4kbx-2b2-2=0.
因为|k|>1,所以1-2k2≠0,
因此△=(4kb)2-4(1-2k2)(-2b2-2)=8(b2+1-2k2)≥0,
即b2≥2k2-1.
因为圆O的圆心(0,0)到直线l的距离d=
,
所以
=d2<
,从而
>b2≥2k2-1,得k2<1,与|k|>1矛盾.
因此,圆x2+y2=
内的点不是“C1-C2型点”.
3 |
x=-
3 |
3 |
| ||
3 |
(2)证明:因为直线y=kx与C2有公共点,
所以方程组
|
|x|+1 |
|x| |
若原点是“C1-C2型点”,则存在过原点的直线与C1、C2都有公共点.
考虑过原点与C2有公共点的直线x=0或y=kx(|k|>1).
显然直线x=0与C1无公共点.
如果直线为y=kx(|k|>1),则由方程组
|
2 |
1-2k2 |
所以直线y=kx(|k|>1)与C1也无公共点.
因此原点不是“C1-C2型点”.
(3)证明:记圆O:x2+y2=
1 |
2 |
故可设l:y=kx+b.
若|k|≤1,由于圆O夹在两组平行线y=x±1与y=-x±1之间,因此圆O也夹在直线y=kx±1与y=-kx±1之间,
从而过Q且以k为斜率的直线l与C2无公共点,矛盾,所以|k|>1.
因为l与C1由公共点,所以方程组
|
得(1-2k2)x2-4kbx-2b2-2=0.
因为|k|>1,所以1-2k2≠0,
因此△=(4kb)2-4(1-2k2)(-2b2-2)=8(b2+1-2k2)≥0,
即b2≥2k2-1.
因为圆O的圆心(0,0)到直线l的距离d=
|b| | ||
|
所以
b2 |
1+k2 |
1 |
2 |
1+k2 |
2 |
因此,圆x2+y2=
1 |
2 |
练习册系列答案
相关题目