题目内容
如图,已知△OFQ的面积为S,且·=1.设||=c(c≥2),S=c.若以O为中心,F为一个焦点的椭圆经过点Q,当||取最小值时,求椭圆的方程.
=1
解析
已知曲线C上动点P(x,y)到定点F1(,0)与定直线l1∶x=的距离之比为常数.(1)求曲线C的轨迹方程;(2)以曲线C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与曲线C交于点M与点N,求·的最小值,并求此时圆T的方程.
如图,F1、F2是椭圆=1(a>b>0)的左、右焦点,点M在x轴上,且=,过点F2的直线与椭圆交于A、B两点,且AM⊥x轴,·=0.(1)求椭圆的离心率;(2)若△ABF1的周长为,求椭圆的方程.
如图,正方形ABCD内接于椭圆=1(a>b>0),且它的四条边与坐标轴平行,正方形MNPQ的顶点M、N在椭圆上,顶点P、Q在正方形的边AB上,且A、M都在第一象限. (1)若正方形ABCD的边长为4,且与y轴交于E、F两点,正方形MNPQ的边长为2.①求证:直线AM与△ABE的外接圆相切;②求椭圆的标准方程;(2)设椭圆的离心率为e,直线AM的斜率为k,求证:2e2-k是定值.
已知椭圆C:=1(a>b>0)的离心率为,F为椭圆的右焦点,M、N两点在椭圆C上,且=λ(λ>0),定点A(-4,0).(1)求证:当λ=1时,⊥;(2)若当λ=1时,有·=,求椭圆C的方程..
是否同时存在满足下列条件的双曲线,若存在,求出其方程,若不存在,说明理由.(1)焦点在轴上的双曲线渐近线方程为;(2)点到双曲线上动点的距离最小值为.
如图,两条相交线段、的四个端点都在椭圆上,其中,直线的方程为,直线的方程为.(1)若,,求的值;(2)探究:是否存在常数,当变化时,恒有?
如图,在平面直角坐标系xOy中,椭圆C:的离心率为,短轴长是2.(1)求a,b的值;(2)设椭圆C的下顶点为D,过点D作两条互相垂直的直线l1,l2,这两条直线与椭圆C的另一个交点分别为M,N.设l1的斜率为k(k≠0),△DMN的面积为S,当时,求k的取值范围.
设抛物线的焦点为,点,线段的中点在抛物线上.设动直线与抛物线相切于点,且与抛物线的准线相交于点,以为直径的圆记为圆.(1)求的值;(2)试判断圆与轴的位置关系;(3)在坐标平面上是否存在定点,使得圆恒过点?若存在,求出的坐标;若不存在,说明理由.