题目内容
设为椭圆上的一点,是该椭圆的两个焦点,若,则的面积为( )
A.2 B.3
C.4 D.5
为数列的前项和,已知,.
(1)求的通项公式;
(2)设,求数列的前项和.
为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理二氧化碳最少为400吨,最多为600吨,月处理成本(元)与月处理量(吨)之间的函数关系可近似的表示为:,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.
(1)若该单位每月成本支出不超过105000元,求月处理量的取值范围;
(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?
已知为第三象限角,则所在的象限是( )
A.第一或第二象限 B.第二或第三象限
C.第一或第三象限 D.第二或第四象限
抛物线的焦点为,点在抛物线上,且,弦的中点在准线上的射影为,则的最大值为 .
双曲线的离心率为,则双曲线的渐近线方程为( )
A. B.
C. D.
已知函数对于任意,总有,且时,.
(1)求证: 在上是减函数;
(2)若,求在区间上的最大值和最小值.
为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如图.
(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);
(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为1,2,估计1-2的值.
现要完成下列3项抽样调查:
①从15件产品中抽取3件进行检查;
②某公司共有160名员工,其中管理人员16名,技术人员120名,后勤人员24名,为了了解员工对公司的意见,拟抽取一个容量为20的样本;
③电影院有28排,每排有32个座位,某天放映电影《英雄》时恰好坐满了观众,电影放完后,为了听取意见,需要请28名观众进行座谈.
较为合理的抽样方法是( )
A.①简单随机抽样,②系统抽样,③分层抽样
B.①分层抽样,②系统抽样,③简单随机抽样
C.①系统抽样,②简单随机抽样,③分层抽样
D.①简单随机抽样,②分层抽样,③系统抽样