题目内容
【题目】在空间中,设m,n为两条不同直线,α,β为两个不同平面,则下列命题正确的是( )
A. 若m∥α且α∥β,则m∥β
B. 若α⊥β,mα,nβ,则m⊥n
C. 若m⊥α且α∥β,则m⊥β
D. 若m不垂直于α,且nα,则m必不垂直于n
【答案】C
【解析】
因为为两条不同直线,为两个不同平面,在中,若且,则或,故错误;在中,若,则与相交、平行或异面,故错误;在中,若且,则由线面垂直的判定定理得,故正确;在中,若不垂直于,且,则有可能垂直于,故错误,
故选C.
【方法点晴】本题主要考查线面平行的判定与性质、面面垂直的性质及线面垂直的判定,属于难题.空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.
练习册系列答案
相关题目
【题目】某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.
(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
频数 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
以100天记录的各需求量的频率作为各需求量发生的概率.
(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列,数学期望及方差;
(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.