题目内容

设函数f(x)=x2+x-
1
4

(1)若函数的定义域为[0,3],求f(x)的值域;
(2)若定义域为[a,a+1]时,f(x)的值域是[-
1
2
1
16
],求a的值.
分析:本题考查二次函数的值域问题,第(1)小问考查的是定轴定区间的值域问题,比较容易,第(2)小问是值域逆向问题,由于区间含有参数a,所以需要对函数的对称轴与区间的位置关系进行讨论,有时还需要考虑区间的中点与对称轴的位置关系.
解答:解:(1)∵f(x)=(x+
1
2
)
2
-
1
2

∴对称轴为x=-
1
2
.∵-
1
2
<0≤x≤3,
∴f(x)的值域是[f(0),f(3)],即[-
1
4
47
4
]

(2)∵f(x)的最小值为-
1
2

∴对称轴x=-
1
2
∈[a,a+1].
a≤ -
1
2
a+1≥-
1
2

解得-
3
2
≤a≤-
1
2

∵区间[a,a+1]的中点为x0=a+
1
2

当a+
1
2
≥-
1
2
,即-1≤a≤-
1
2
时,
f(x)最大值为f(a+1)=
1
16

∴(a+1)2+(a+1)-
1
4
=
1
16

∴16a2+48a+27=0.
∴a=-
3
4
(a=-
9
4
舍去)

当a+
1
2
<-
1
2
,即-
3
2
≤a<-1时,
f(x)最大值为f(a)=
1
16

∴a2+a-
1
4
=
1
16

∴16a2+16a-5=0.
∴a=-
5
4
(a=
1
4
舍去)

综上知a=-
3
4
或a=-
5
4
点评:本题涉及的主要数学思想是分类讨论的思想,对于分类讨论的题目,我们要弄清楚分类的标准,做到不重复不漏掉;
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网