ÌâÄ¿ÄÚÈÝ
Èçͼ£¬ÊµÏß²¿·ÖDE£¬DF£¬EFÊÇij·ç¾°ÇøÉè¼ÆµÄÓο͹۹â·ÏßƽÃæͼ£¬ÆäÖÐÇúÏß²¿·ÖEFÊÇÒÔABΪֱ¾¶µÄ°ëÔ²ÉϵÄÒ»¶Î»¡£¬µãOΪԲÐÄ£¬¡÷ABDÊÇÒÔABΪб±ßµÄµÈÑüÖ±½ÇÈý½ÇÐΣ¬ÆäÖÐAB=2ǧÃ×£¬¡ÏEOA=¡ÏFOB=2x(0£¼x£¼
)£®ÈôÓοÍÔÚÿÌõ·ÏßÉÏÓÎÀÀµÄ¡°ÁôÁµ¶È¡±¾ùÓëÏàÓ¦µÄÏ߶λò»¡µÄ³¤¶È³ÉÕý±È£¬ÇÒ¡°ÁôÁµ¶È¡±Óë·ÏßDE£¬DFµÄ³¤¶ÈµÄ±ÈÀýϵÊýΪ2£¬Óë·ÏßEFµÄ³¤¶ÈµÄ±ÈÀýϵÊýΪ1£¬¼Ù¶¨¸Ã·ç¾°ÇøÕûÌåµÄ¡°ÁôÁµ¶È¡±yÊÇÓοÍÓÎÀÀËùÓзÏß¡°ÁôÁµ¶È¡±µÄºÍ£®
£¨I£©ÊÔ½«y±íʾΪxµÄº¯Êý£»
£¨II£©ÊÔÈ·¶¨µ±xÈ¡ºÎֵʱ£¬¸Ã·ç¾°ÇøÕûÌåµÄ¡°ÁôÁµ¶È¡±×î¼Ñ£¿
¦Ð | 4 |
£¨I£©ÊÔ½«y±íʾΪxµÄº¯Êý£»
£¨II£©ÊÔÈ·¶¨µ±xÈ¡ºÎֵʱ£¬¸Ã·ç¾°ÇøÕûÌåµÄ¡°ÁôÁµ¶È¡±×î¼Ñ£¿
·ÖÎö£º£¨¢ñ£©ÓÉ»¡³¤¹«Ê½Çó³ö»¡AEÓëBFµÄ³¤¶È£¬ÓÉÔ²µÄÖܳ¤¹«Ê½Çó³ö°ëÔ²µÄ³¤¶È£¬Ôò»¡EFµÄ³¤¶È¿ÉÇó£¬Á¬½áODºó£¬ÔÚÈý½ÇÐÎODEºÍÈý½ÇÐÎODFÖУ¬ÀûÓÃÓàÏÒ¶¨Àí¿ÉÇóDEºÍDFµÄ³¤¶È£¬È»ºó¸ù¾ÝÓοÍÔÚÿÌõ·ÏßÉÏÓÎÀÀµÄ¡°ÁôÁµ¶È¡±¾ùÓëÏàÓ¦µÄÏ߶λò»¡µÄ³¤¶È³ÉÕý±È£¬ÇÒ¡°ÁôÁµ¶È¡±Óë·ÏßDE£¬DFµÄ³¤¶ÈµÄ±ÈÀýϵÊýΪ2£¬Óë·ÏßEFµÄ³¤¶ÈµÄ±ÈÀýϵÊýΪ1£¬¸Ã·ç¾°ÇøÕûÌåµÄ¡°ÁôÁµ¶È¡±yÊÇÓοÍÓÎÀÀËùÓзÏß¡°ÁôÁµ¶È¡±µÄºÍ½«y±íʾΪxµÄº¯Êý£»
£¨¢ò£©Çó³ö£¨¢ñ£©Öк¯ÊýµÄµ¼º¯Êý£¬½â³öµ¼º¯ÊýµÄÁãµã£¬ÓÉÁãµã°Ñ¶¨ÒåÓò·Ö¶Î£¬¸ù¾Ýµ¼º¯ÊýµÄ·ûºÏÅжÏÔº¯ÊýÔÚ¸÷¶ÎÄڵĵ¥µ÷ÐÔ£¬´Ó¶øµÃµ½¼«Öµµã£¬È·¶¨³öµ±xÈ¡ºÎֵʱ£¬¸Ã·ç¾°ÇøÕûÌåµÄ¡°ÁôÁµ¶È¡±×î¼Ñ£®
£¨¢ò£©Çó³ö£¨¢ñ£©Öк¯ÊýµÄµ¼º¯Êý£¬½â³öµ¼º¯ÊýµÄÁãµã£¬ÓÉÁãµã°Ñ¶¨ÒåÓò·Ö¶Î£¬¸ù¾Ýµ¼º¯ÊýµÄ·ûºÏÅжÏÔº¯ÊýÔÚ¸÷¶ÎÄڵĵ¥µ÷ÐÔ£¬´Ó¶øµÃµ½¼«Öµµã£¬È·¶¨³öµ±xÈ¡ºÎֵʱ£¬¸Ã·ç¾°ÇøÕûÌåµÄ¡°ÁôÁµ¶È¡±×î¼Ñ£®
½â´ð£º½â£º£¨¢ñ£©ÒòΪOA=
AB=1£¬¡ÏEOA=¡ÏFOB=2x£¬ËùÒÔ»¡AEµÈÓÚ»¡BFµÄ³¤µÈÓÚ2x£¬
ÓÖ°ëÔ²Öܳ¤Îª¦Ð£¬ËùÒÔ»¡EFµÄ³¤Îª¦Ð-4x£¬Á¬½áOD£¬ÔòÓÉOD=OE=OF=1£¬¡ÏFOD=¡ÏEOD=
+2x£¬
ËùÒÔDE=DF=
=
=
(sinx+cosx)£®
ÓÖÒòΪÔÚÿÌõ·ÏßÉÏÓÎÀÀµÄ¡°ÁôÁµ¶È¡±¾ùÓëÏàÓ¦µÄÏ߶λò»¡µÄ³¤¶È³ÉÕý±È£¬ÇÒ¡°ÁôÁµ¶È¡±Óë·ÏßDE£¬DFµÄ³¤¶ÈµÄ±ÈÀýϵÊýΪ2£¬Óë·ÏßEFµÄ³¤¶ÈµÄ±ÈÀýϵÊýΪ1£¬
ËùÒÔ£¬y=4
(sinx+cosx)+¦Ð-4x £¨0£¼x£¼
£©£»
£¨¢ò£©ÓÉy=4
(sinx+cosx)+¦Ð-4x £¨0£¼x£¼
£©£¬
µÃ£ºy¡ä=4
(cosx-sinx)-4£¬
ÓÉy¡ä=0£¬µÃ£º4
(cosx-sinx)-4=0£¬
ËùÒÔcos(x+
)=
£¬½âµÃx=
£®
ÓÖµ±x¡Ê(0£¬
)ʱ£¬y¡ä£¾0£¬ËùÒÔ´ËʱyÔÚ(0£¬
)Éϵ¥µ÷µÝÔö£¬
µ±x¡Ê(
£¬
)ʱ£¬y¡ä£¼0£¬ËùÒÔ´ËʱyÔÚ(
£¬
)Éϵ¥µ÷µÝ¼õ£¬
¹Êµ±x=
ʱ£¬º¯ÊýyÓÐ×î´óÖµ£¬
´ð£ºµ±x=
ʱ£¬¸Ã·ç¾°ÇøÕûÌåµÄ¡°ÁôÁµ¶È¡±×î¼Ñ£®
1 |
2 |
ÓÖ°ëÔ²Öܳ¤Îª¦Ð£¬ËùÒÔ»¡EFµÄ³¤Îª¦Ð-4x£¬Á¬½áOD£¬ÔòÓÉOD=OE=OF=1£¬¡ÏFOD=¡ÏEOD=
¦Ð |
2 |
ËùÒÔDE=DF=
1+1-2cos(2x+
|
2+2sin2x |
2 |
ÓÖÒòΪÔÚÿÌõ·ÏßÉÏÓÎÀÀµÄ¡°ÁôÁµ¶È¡±¾ùÓëÏàÓ¦µÄÏ߶λò»¡µÄ³¤¶È³ÉÕý±È£¬ÇÒ¡°ÁôÁµ¶È¡±Óë·ÏßDE£¬DFµÄ³¤¶ÈµÄ±ÈÀýϵÊýΪ2£¬Óë·ÏßEFµÄ³¤¶ÈµÄ±ÈÀýϵÊýΪ1£¬
ËùÒÔ£¬y=4
2 |
¦Ð |
4 |
£¨¢ò£©ÓÉy=4
2 |
¦Ð |
4 |
µÃ£ºy¡ä=4
2 |
ÓÉy¡ä=0£¬µÃ£º4
2 |
ËùÒÔcos(x+
¦Ð |
4 |
1 |
2 |
¦Ð |
12 |
ÓÖµ±x¡Ê(0£¬
¦Ð |
12 |
¦Ð |
12 |
µ±x¡Ê(
¦Ð |
12 |
¦Ð |
4 |
¦Ð |
12 |
¦Ð |
4 |
¹Êµ±x=
¦Ð |
12 |
´ð£ºµ±x=
¦Ð |
12 |
µãÆÀ£º±¾ÌâÊÇÒ»¸öÊýѧ½¨Ä£ÎÊÌ⣬½â´ðµÄ¹Ø¼üÊǶÁ¶®ÌâÒ⣬ÕýÈ·Áгöº¯Êý±í´ïʽ£¬È»ºóÀûÓõ¼ÊýÇóº¯ÊýÔÚ¿ªÇø¼äÄڵļ«Öµ£¬½øÒ»²½µÃµ½º¯ÊýÔÚ±ÕÇø¼äÄÚµÄ×îÖµ£®´ËÌâÊôÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿