题目内容
如图,在三棱锥中,底面,,,,点,分别在棱上,且
(Ⅰ)求证:平面;
(Ⅱ)当为的中点时,求与平面所成的角的大小;
(Ⅲ)是否存在点使得二面角为直二面角?并说明理由.
(Ⅰ)求证:平面;
(Ⅱ)当为的中点时,求与平面所成的角的大小;
(Ⅲ)是否存在点使得二面角为直二面角?并说明理由.
(Ⅰ)见解析 (Ⅱ) (Ⅲ)存在,理由见解析
本题主要考查直线和平面垂直、直线与平面所成的角、二面角等基础知识,考查空间想象能力、运算能力和推理论证能力.
(Ⅰ)∵PA⊥底面ABC,∴PA⊥BC.又,∴AC⊥BC.
∴BC⊥平面PAC.
(Ⅱ)∵D为PB的中点,DE//BC,∴,
又由(Ⅰ)知,BC⊥平面PAC,∴DE⊥平面PAC,垂足为点E.
∴∠DAE是AD与平面PAC所成的角,∵PA⊥底面ABC,∴PA⊥AB,又PA=AB,
∴△ABP为等腰直角三角形,∴,∴在Rt△ABC中,,∴.
∴在Rt△ADE中,,∴与平面所成的角的大小.
(Ⅲ)∵AE//BC,又由(Ⅰ)知,BC⊥平面PAC,∴DE⊥平面PAC,
又∵AE平面PAC,PE平面PAC,∴DE⊥AE,DE⊥PE,∴∠AEP为二面角的平面角,
∵PA⊥底面ABC,∴PA⊥AC,∴.∴在棱PC上存在一点E,使得AE⊥PC,这时,
故存在点E使得二面角是直二面角.
(Ⅰ)∵PA⊥底面ABC,∴PA⊥BC.又,∴AC⊥BC.
∴BC⊥平面PAC.
(Ⅱ)∵D为PB的中点,DE//BC,∴,
又由(Ⅰ)知,BC⊥平面PAC,∴DE⊥平面PAC,垂足为点E.
∴∠DAE是AD与平面PAC所成的角,∵PA⊥底面ABC,∴PA⊥AB,又PA=AB,
∴△ABP为等腰直角三角形,∴,∴在Rt△ABC中,,∴.
∴在Rt△ADE中,,∴与平面所成的角的大小.
(Ⅲ)∵AE//BC,又由(Ⅰ)知,BC⊥平面PAC,∴DE⊥平面PAC,
又∵AE平面PAC,PE平面PAC,∴DE⊥AE,DE⊥PE,∴∠AEP为二面角的平面角,
∵PA⊥底面ABC,∴PA⊥AC,∴.∴在棱PC上存在一点E,使得AE⊥PC,这时,
故存在点E使得二面角是直二面角.
练习册系列答案
相关题目