题目内容
函数f(x)=x+2cosx在区间上的最大值为_________;在区间[0,2π]上最大值为___________.
已知函数f(x)的图象在[a,b]上连续不断,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值.若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.
(1)已知函数f(x)=2sinx,x∈[0,],试写出f1(x),f2(x)的表达式,并判断f(x)是否为[0,]上的“k阶收缩函数”,如果是,请求对应的k的值;如果不是,请说明理由;
(2)已知b>0,函数g(x)=-x3+3x2是[0,b]上的2阶收缩函数,求b的取值范围.
选修4—5:不等式选讲
已知函数f(x)=|x-4|-|x-2|.
(1)作出函数y=f(x)的图象;
(2)解不等式|x-4|-|x-2|>1.
已知函数f(x)=x|2-x|-m有3个零点分别为x1,x2,x3,则x1+x2+x3的取值范围是 .
已知函数f(x)=x-xlnx , ,其中表示函数f(x)在
x=a处的导数,a为正常数.
(1)求g(x)的单调区间;
(2)对任意的正实数,且,证明:
(3)对任意的
已知函数f(x)=x|2-x|-m有3个零点分别为x1,x2,x3,则x1+x2+x3的取值范围是____________