题目内容
(2013·天津高考)已知首项为的等比数列{an}的前n项和为Sn(n∈N*),且-2S2,S3,4S4成等差数列.
(1)求数列{an}的通项公式.
(2)证明Sn+≤(n∈N*).
(1)求数列{an}的通项公式.
(2)证明Sn+≤(n∈N*).
(1)an= (-1)n-1·. (2)见解析
(1)设等比数列{an}的公比为q,由-2S2,S3,4S4成等差数列,所以S3+2S2=4S4-S3,S4-S3=S2-S4,可得2a4=-a3,于是q==-.又a1=,所以等比数列{an}的通项公式为an=×=(-1)n-1·.
(2)Sn=1-,Sn+=1-+=
当n为奇数时,Sn+随n的增大而减小,所以Sn+≤S1+=.
当n为偶数时,Sn+随n的增大而减小,所以Sn+≤S2+=.
故对于n∈N*,有Sn+≤.
(2)Sn=1-,Sn+=1-+=
当n为奇数时,Sn+随n的增大而减小,所以Sn+≤S1+=.
当n为偶数时,Sn+随n的增大而减小,所以Sn+≤S2+=.
故对于n∈N*,有Sn+≤.
练习册系列答案
相关题目