题目内容
【题目】已知圆,某抛物线的顶点为原点,焦点为圆心,经过点的直线交圆于, 两点,交此抛物线于, 两点,其中, 在第一象限, , 在第二象限.
(1)求该抛物线的方程;
(2)是否存在直线,使是与的等差中项?若存在,求直线的方程;若不存在,请说明理由.
【答案】(1)抛物线的方程为 (2)存在满足要求的直线,其方程为或
【解析】试题分析:(1)圆方程可化为可化为 圆心的坐标为, 抛物线的方程为;(2)由等差数列性质可得
,再由, , 存在满足要求的直线,其方程为或.
试题解析:
(1)可化为,
根据已知抛物线的方程为().
∵圆心的坐标为,∴,解得.
∴抛物线的方程为.
(2)∵是与的等差中项,圆的半径为2,∴.
∴.
由题知,直线的斜率存在,故可设直线的方程为,
设, ,
由,得, ,
故, .
∵
∴
由,解得.
∴存在满足要求的直线,其方程为或
练习册系列答案
相关题目