题目内容
已知当椭圆的长轴、短轴、焦距依次成等比时称椭圆为“黄金椭圆”,请用类比的性质定义“黄金双曲线”,并求“黄金双曲线”的离心率为( )
A. | B. | C. | D. |
D
解析试题分析:即2a,2b,2c成等比数列。所以,,所以且e>1,
解得e=,关系D。
考点:本题主要考查双曲线的几何性质。
点评:简单题,在圆锥曲线问题中,a,b,c,e的关系,是常考点,它们的内再联系要牢记。
练习册系列答案
相关题目
设是椭圆上的一点,为焦点,且,则 的面积为( )
A. | B. | C. | D.16 |
已知, 是椭圆的两个焦点,若满足的点M总在椭圆的内部,则椭圆离心率的取值范围是( )
A.(0, 1) | B. | C. | D. |
已知抛物线的焦点为,点,在抛物线上,且, 则有 ( )
A. | B. |
C. | D. |
要使直线与焦点在轴上的椭圆总有公共点,实数的取值范围是( )
A. | B. | C. | D. |
双曲线的一条渐近线的倾斜角为,离心率为,则的最小值为( )
A. | B. | C. | D. |
双曲线的离心率为,则它的渐近线方程为
A. | B. | C. | D. |
过双曲线的右焦点F作实轴所在直线的垂线,交双曲线于A,B两点,设双曲线的左顶点M,若点M在以AB为直径的圆的内部,则此双曲线的离心率e的取值范围为( )
A.(,+∞) | B.(1,) | C.(2,+∞) | D.(1,2) |
已知已知点(2,3)在双曲线C:上,C的焦距为4,
则它的离心率为( )
A.2 | B. | C. | D. |