题目内容

2.函数f(x)=log${\;}_{\frac{1}{2}}$(2x-x2)的单调递减区间为(  )
A.(0,2)B.(-∞,1]C.[1,2)D.(0,1]

分析 ①当x∈(0,1)时,u(x)单调递增,f(x)=$lo{g}_{\frac{1}{2}}$u(x)单调递减;
②当x∈(1,2)时,u(x)单调递减,f(x)=$lo{g}_{\frac{1}{2}}$u(x)单调递增.

解答 解:记u(x)=2x-x2=-(x-1)2+1,
u(x)的图象为抛物线,对称轴为x=1,且开口向下,
令u(x)>0解得x∈(0,2),
①当x∈(0,1)时,u(x)单调递增,f(x)=$lo{g}_{\frac{1}{2}}$u(x)单调递减,
即原函数的单调递减区间为(0,1);
②当x∈(1,2)时,u(x)单调递减,f(x)=$lo{g}_{\frac{1}{2}}$u(x)单调递增,
即原函数的单调递增区间为(1,2).
故选D(x=1可取).

点评 本题主要考查了对数型复合函数的性质,涉及函数的定义域和单调性及单调区间,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网