题目内容

【题目】在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,且a2+bc=b2+c2
(1)求∠A的大小;
(2)若b=2,a= ,求边c的大小;
(3)若a= ,求△ABC面积的最大值.

【答案】
(1)解:∵a2+bc=b2+c2

∴cosA= = =

∴A=


(2)解:∵由(1)可得: = = ,整理可得:c2﹣2c+1=0,

∴解得:c=1


(3)解:∵a= ,A=

∴由余弦定理可得:3=b2+c2﹣2bccosA=b2+c2﹣bc,解得:bc≤3,

=


【解析】(1)由已知及余弦定理可得cosA= = = ,即可解得A.(2)由(1)及余弦定理即可得解.(3)由余弦定理可得:3=b2+c2﹣2bccosA=b2+c2﹣bc,从而解得bc≤3,利用三角形面积公式即可得解.
【考点精析】解答此题的关键在于理解正弦定理的定义的相关知识,掌握正弦定理:,以及对余弦定理的定义的理解,了解余弦定理:;;

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网