题目内容
【题目】将一个内角为且边长为的菱形沿着较短的对角线折成一个二面角为的空间四边形,则此空间四边形的外接球的半径为
A. B. C. D.
【答案】D
【解析】分析: 首先把平面图形转换为空间图形,进一步利用球的中心和勾股定理的应用求出结果.
详解: 如图所示:
菱形ABCD的∠A=60°,沿BC折叠,得到上图,
则E、F分别是△ABC和△BCD的中心,
球心O为△ABC和△BCD的过中心的垂线的交点,
则:OE=OF=1,EC=2,
利用勾股定理得:
故答案为:D
点睛: (1)本题主要考查空间几何体的外接球问题,考查二面角,意在考查学生对这些基础知识的掌握能力及空间想象能力. (2)解答本题的关键是找到球心,由于E、F分别是△ABC和△BCD的中心,所以球心O为△ABC和△BCD的过中心的垂线的交点.
练习册系列答案
相关题目
【题目】红星海水养殖场进行某水产品的新旧养殖方法的产量对比,收货时在旧养殖的大量网箱中随机抽取 个网箱,在新养殖法养殖的大量网箱中也随机抽取个网箱,测量各箱水产品的产量,得样本频率分布直方图如下:
(1)填写下列列联表,并根据列联表判断是否有的把握认为箱产量与养殖方法有关.
养殖法 箱产量 | 箱产量 | 箱产量 | 总计 |
旧养殖法 | |||
新养殖法 | |||
总计 |
(2)设两种养殖方法的产量互相独立,记表示事件:“旧养殖法的箱产量低于,新养殖法的箱产量不低于 ”,估计的概率;
(3)某水产批发户从红星海水养殖场用新养殖法养殖的大量网箱水产品中购买了个网箱的水产品,记表示箱产量位于区间的网箱个数,以上样本在相应区间的频率代替概率,求 .
(,其中 )