题目内容

(2014·大连模拟)已知f(x)=alnx+x2,若对任意两个不等的正实数x1,x2都有>0成立,则实数a的取值范围是(  )
A.[0,+∞)B.(0,+∞)
C.(0,1)D.(0,1]
A
因为f(x)=alnx+x2,
所以f′(x)=+x.
又对?x1,x2∈(0,+∞),x1≠x2,>0恒成立,
即f(x1)-f(x2)与x1-x2同号,
得f(x)在(0,+∞)上为增函数,
所以f′(x)=+x≥0在(0,+∞)上恒成立,
即a≥-x2在(0,+∞)上恒成立,
所以a≥0.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网