题目内容
下列命题中,假命题为 ( )
A.存在四边相等的四边形不是正方形
B.z1,z2∈C,z1+z2为实数的充分必要条件是z1,z2互为共轭复数
C.若x,y∈R,且x+y>2,则x,y至少有一个大于1
D.对于任意n∈N+,C
+C
+…+C
都是偶数
B
解析 空间四边形可能四边相等,但不是正方形,故A为真命题;令z1=1+bi,z2=3-bi(b∈R),显然z1+z2=4∈R,但z1,z2不互为共轭复数,B为假命题;假设x,y都不大于1,则x+y>2不成立,故与题设条件“x+y>2”矛盾,假设不成立,故C为真命题;C
+C
+…+C
=2n为偶数,故D为真命题.排除A,C,D,应选B.
练习册系列答案
相关题目