题目内容

【题目】点A、B、C是抛物线y2=4x上不同的三点,若点F(1,0)满足 ,则△ABF面积的最大值为(
A.
B.
C.
D.2

【答案】A
【解析】解:抛物线焦点坐标F(1,0),准线方程:x=﹣1
设A(x1 , y1),B(x2 , y2),C(x3 , y3),直线AB与x轴交于点D(m,0),
,∴m=﹣
∵点F(1,0)满足
∴点F是△ABC重心,
∴x1+x2+x3=3,y1+y2+y3=0,
∴y12+y22=12﹣y32 , y1+y2=﹣y3
∴2y1y2=(y1+y22﹣(y12+y22)=2y32﹣12
∴SABF2= (1+ 2(y1﹣y22= (﹣ + y322(24﹣3y32
令y32=t≥0,y=(﹣2+t)2(8﹣t)
令y′=0,则t1=2,t2=6.
当t∈(0,2)时函数单调递减,当t∈(2,6)时函数单调递增,t∈(6,+∞)时函数单调递减且当t=0时y= ,当t=6时y=
∴ymax=
∴△ABF面积的最大值为
故选:A.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网