题目内容

有如下结论:“圆x2+y2=r2上一点P(x0,y0)处的切线方程为x0y+y0y=r2”,类比也有结论:“椭圆
x2
a2
+
y2
b2
=1(a>b>0)上一点P(x0,y0)处的切线方程为
x0x
a2
+
y0y
b2
=1”,过椭圆C:
x2
2
+y2=1
的右准线l上任意一点M引椭圆C的两条切线,切点为 A、B.直线AB恒过一定点
(1,0)
(1,0)
分析:设出M的坐标,及两个切点的坐标,由椭圆方程写出切线方程,把M的坐标代入切线方程,得到切点所在的直线方程,即可得到结论.
解答:解:设M(2,t)(t∈R),A(x1,y1),B(x2,y2),则MA的方程为
x1x
2
+y1y=1

∵点M在MA上,∴x1+ty1=1①,同理可得x2+ty2=1 ②
由①②知AB的方程为 x+ty=1,即x-1=ty
∴直线AB恒过一定点(1,0)
故答案为(1,0)
点评:本题考查类比推理,考查椭圆的切线方程,考查直线恒过定点,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网