题目内容

精英家教网如图,△ABC内接于⊙O,AB=AC,直线MN切⊙O于点C,BE∥MN交AC于点E.若AB=6,BC=4,求AE的长.
分析:由已知中,直线MN切⊙O于点C,由弦线角定理我们易得∠BCM=∠A,再由BE∥MN,我们可得∠BCM=∠EBC,我们可判断出△ABC∽△BEC,由相似三角形对应边成比例,结合AB=6,BC=4,即可求出AE的长.
解答:解:∵∠BCM=∠A,BE∥MN,
∴∠BCM=∠EBC,∠A=∠EBC.又∠ACB是公共角,
∴△ABC∽△BEC,
AC
BC
=
BC
EC

∵AB=AC=6,BC=4,
∴EC=
BC2
AC
=
42
6
=
8
3

∴AE=AC-EC=
10
3
点评:本题考查的知识点是弦切角定理,三角形相似的判定与性质,其中根据已知条件判断出△ABC∽△BEC是解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网